


## INTRODUCTION

Several studies have shown that CML patients with BCR-ABL1 transcript type e14a2 achieved a major molecular response (MMR) on tyrosine kinase inhibitor (TKI) therapy earlier than patients with e13a2. In contrast, transcript type had no effect on long-term survival. This raises the question whether the observed disparity in MMR achievement is driven by biological differences or technical aspects of BCR-ABL1 qPCR. The same primers and probe are standardly used to quantify e13a2 and e14a2, however, the different length of amplicons may impact the PCR efficiency.

# **OBJECTIVE**

This EUTOS study aimed to investigate differences in molecular response between CML patients with e13a2 and e14a2 based on quantification of BCR-ABL1 at both genomic DNA and mRNA levels.

# **METHODS**

## **Characterization of patient cohort (Table 1)**

- DNA patient-specific assays were successfully applied in 71 of 81 newly diagnosed patients.
- Four patients from 71 were excluded due to a quick TKI change after the start of first-line TKI treatment (1 patient), combination therapy with interferon alpha (2 patients) or higher than normal TKI doses (1 patient).
- Altogether, data from 67 patients were evaluated. Of these, 27 patients had e13a2 and 40 patients had e14a2.

## **Quantification of gBCR-ABL1 (g=genomic)**

- Patient-specific genomic fusion were characterized by NGS.
- gBCR-ABL1 was performed by patient-specific qPCR.
- Albumin was used as the control gene to normalise results

## **Quantification of mRNA BCR-ABL1**

Standardized real-time qPCR for BCR-ABL1 transcript quantification was performed using GUSB as control gene.

## **BCR-ABL1 data evaluation**

gBCR-ABL1 levels in follow-up samples were calculated relative to the diagnostic sample (gBCR-ABL1<sub>RelDg</sub>) or sample at TKI start (gBCR-ABL1<sub>RelTKI</sub>)

## % gBCR-ABL1<sub>RelDg</sub> = (% gBCR-ABL1<sub>sample</sub>)/(% gBCR-ABL1<sub>Dg</sub>)\*100

Individual molecular responses at the mRNA level were calculated relative to the diagnostic sample (BCR-ABL1<sub>RelDg</sub>) or sample at TKI start (BCR-ABL1<sub>RelTKI</sub>)

% BCR-ABL1<sub>RelDg</sub> = (% BCR-ABL1<sub>sample</sub>)/(% BCR-ABL1<sub>Dg</sub>)\*100

## **Assessment of BCR-ABL1 cDNA amplification efficiency**

- 10-fold dilution series of plasmids containing either the e13a2 or e14a2 BCR-ABL1 transcript variants and an ABL1 reference sequence were distributed to laboratories across Europe (n = 14). Data from 4 labs were excluded due to deviations in protocol or results outside 1.5 x IQR of the data set. Results from 10 laboratories were analysed in total.
- The amplification efficiency of each transcript was determined for each laboratory by constructing standard curves from the plasmid dilutions using local BCR-ABL1 monitoring protocols, based on the EAC BCR-ABL1 RT-qPCR assay. The mean relative amplification ratio of BCR-ABL1:ABL1 for both transcripts was calculated from plasmid Cq values, either with or
- without correction for BCR-ABL1 amplification efficiency

## **Statistical analysis**

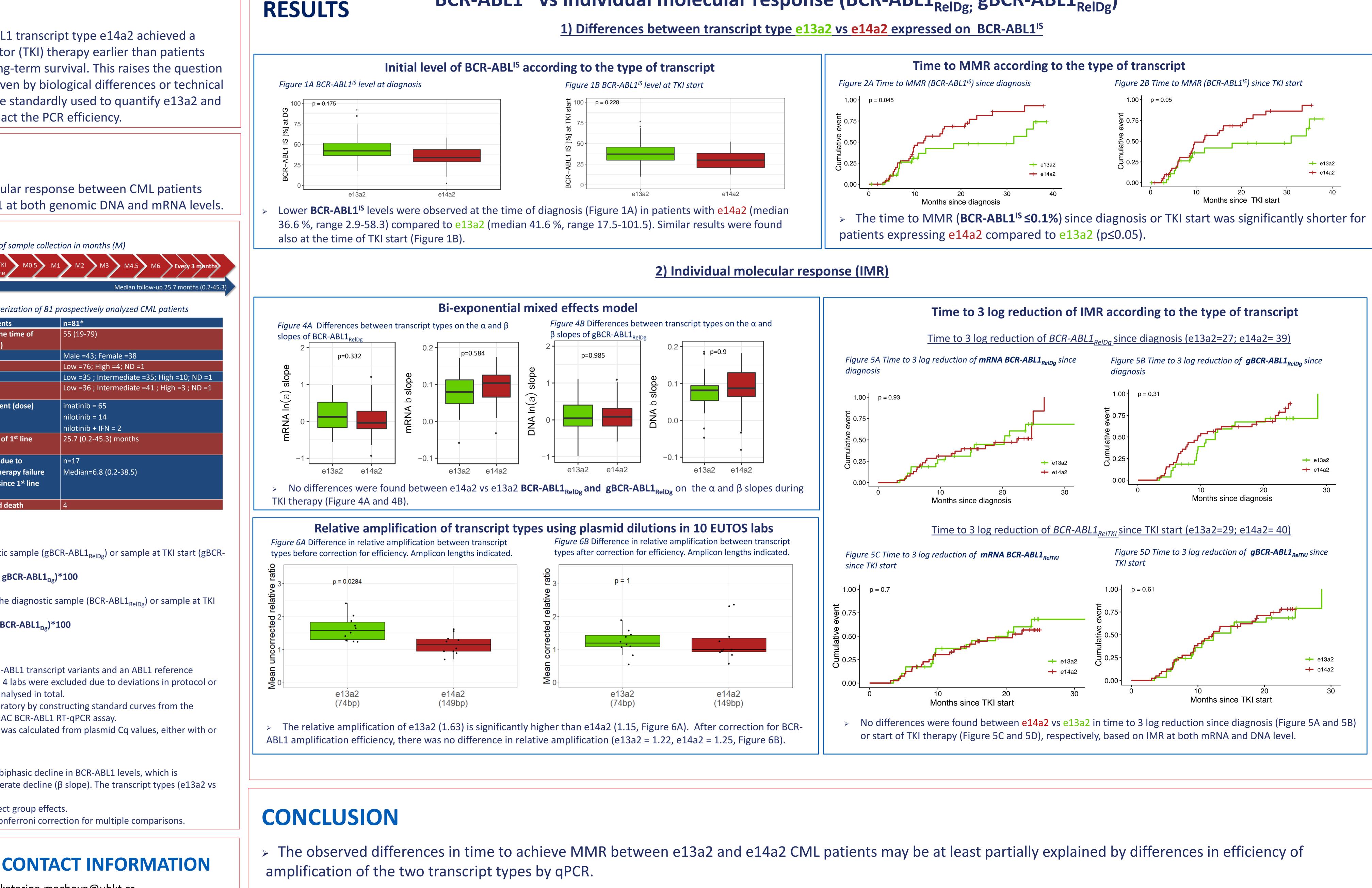
- A bi-exponential mixed effect model was used to analyze differences in the biphasic decline in BCR-ABL1 levels, which is characterized by an initial steep decline ( $\alpha$  slope) followed by a second moderate decline ( $\beta$  slope). The transcript types (e13a2 vs e14a2) were included as covariates.
- Wald tests were applied to assess the statistical significance of the fixed-effect group effects.
- Relative amplification efficiencies were compared by pairwise t-test, with Bonferroni correction for multiple comparisons.

## ACKNOWLEDGEMENTS

EUTOS2018, AZV15-31540A, MZCR 00023736 plus the additional EUTOS labs who contributed data to Figure 6 (Brno, Catania, Porto, Jena, Bologna, Bucharest, Barcelona, Krakow, Orbassano, Vienna, Leipzig, Naples)

## Scheme 1 Schedule of sample collection in months (M)

Table 1 Characterization of 81 prospectively analyzed CML patients


| Number of patients                                 | n=81*                              |
|----------------------------------------------------|------------------------------------|
| Median age at the time of                          | 55 (19-7                           |
| diagnosis (range)                                  |                                    |
| Sex                                                | Male =4                            |
| EUTOS score                                        | Low =76                            |
| Sokal score                                        | Low =35                            |
| Hasford score                                      | Low =36                            |
| First line treatment (dose)                        | imatinik<br>nilotinik<br>nilotinik |
| Median months of 1 <sup>st</sup> line<br>treatment | 25.7 (0.2                          |
| Change therapy due to                              | n=17                               |
| intolerance or therapy failure                     | Median                             |
| Median month since 1 <sup>st</sup> line            |                                    |
| treatment                                          |                                    |
| CML non-related death                              | 4                                  |

katerina.machova@uhkt.cz ncpc@soton.ac.uk

# Individual molecular response evaluation on both DNA and mRNA BCR-ABL1 level diminished differences in time to molecular response achievement between CML patients with e13a2 vs e14a2 transcript type

(aterina Machova Polakova\* <sup>1</sup>. Matthew Salmon<sup>2</sup>, Hana Zizkova<sup>1</sup>, Andrea Gottschalk<sup>3</sup>, Eliska Motlova<sup>1</sup>, Marketa Stastna Markova<sup>1</sup>, Dana Srbova<sup>1</sup>, AdelaBenesova<sup>1</sup>, Vaclava Polivkova<sup>1</sup>, Daniela Zackov Jiri Mayer<sup>6</sup>, Ingo Roeder<sup>3</sup>, Ingmar Glauche<sup>3</sup>, Andreas Hochhaus<sup>7</sup>, Helen White<sup>2</sup>, Nicholas Cross<sup>2</sup>

<sup>1</sup>Institute of Hematology and Blood Transfusion, Prague, Czech Republic, <sup>2</sup>Wessex Regional Genetics Laboratory, Salisbury, United Kingdom, <sup>3</sup>Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany, <sup>4</sup>Center of Molecular Biology and Gene Therapy, Internal Hematology and Oncology Clinic, Faculty of Medicine, Masaryk University, Brno, <sup>5</sup>CLIP, Dept. of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, <sup>6</sup>Internal Hematology and Oncology Clinic, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic, <sup>7</sup>Abteilung Hämatologie/Onkologie, Klinik für Innere Medizin II, University of Jena, Jena, Germany



A multicentre study is underway to assess how widespread this issue is, and how it may be addressed.

# BCR-ABL1<sup>IS</sup> vs individual molecular response (BCR-ABL1<sub>RelDg</sub>; gBCR-ABL1<sub>RelDg</sub>)

